Source code for arviz_stats.loo.loo_score

"""Continuously ranked probability scores with PSIS-LOO-CV weights."""

from collections import namedtuple

import numpy as np
import xarray as xr
from arviz_base import convert_to_datatree, extract
from xarray_einstats.stats import logsumexp

from arviz_stats.base.stats_utils import round_num
from arviz_stats.loo.helper_loo import (
    _get_r_eff,
    _prepare_loo_inputs,
    _validate_crps_input,
    _warn_pareto_k,
)


[docs] def loo_score( data, var_name=None, log_weights=None, pareto_k=None, kind="crps", pointwise=False, round_to=None, ): r"""Compute PWM-based CRPS/SCRPS with PSIS-LOO-CV weights. Implements the probability-weighted-moment (PWM) identity for the continuous ranked probability score (CRPS) with Pareto-smoothed importance sampling leave-one-out (PSIS-LOO-CV) weights, but returns its negative as a maximization score (larger is better). This assumes that the PSIS-LOO-CV approximation is working well. Specifically, the PWM identity used here is .. math:: \operatorname{CRPS}_{\text{loo}}(F, y) = E_{\text{loo}}\left[|X - y|\right] + E_{\text{loo}}[X] - 2\cdot E_{\text{loo}} \left[X\,F_{\text{loo}}(X') \right]. The PWM identity is described in [3]_, traditional CRPS and SCRPS are described in [1]_ and [2]_, and the PSIS-LOO-CV method is described in [4]_ and [5]_. Parameters ---------- data : DataTree or InferenceData Input data. It should contain the ``posterior_predictive``, ``observed_data`` and ``log_likelihood`` groups. var_name : str, optional The name of the variable in the log_likelihood group to use. If None, the first variable in ``observed_data`` is used and assumed to match ``log_likelihood`` and ``posterior_predictive`` names. log_weights : DataArray, optional Smoothed log weights for PSIS-LOO-CV. Must have the same shape as the log-likelihood data. Defaults to None. If not provided, they will be computed via PSIS-LOO-CV. Must be provided together with ``pareto_k`` or both must be None. pareto_k : DataArray, optional Pareto tail indices corresponding to the PSIS smoothing. Same shape as the log-likelihood data. If not provided, they will be computed via PSIS-LOO-CV. Must be provided together with ``log_weights`` or both must be None. kind : str, default "crps" The kind of score to compute. Available options are: - 'crps': continuous ranked probability score. Default. - 'scrps': scale-invariant continuous ranked probability score. pointwise : bool, default False If True, include per-observation score values in the return object. round_to : int or str, optional If integer, number of decimal places to round the result. If string of the form '2g' number of significant digits to round the result. Defaults to '2g'. Use None to return raw numbers. Returns ------- namedtuple If ``pointwise`` is False (default), a namedtuple named ``CRPS`` or ``SCRPS`` with fields ``mean`` and ``se``. If ``pointwise`` is True, the namedtuple also includes a ``pointwise`` field with per-observation values. Examples -------- Compute scores and return the mean and standard error: .. ipython:: :okwarning: In [1]: from arviz_stats import loo_score ...: from arviz_base import load_arviz_data ...: dt = load_arviz_data("centered_eight") ...: loo_score(dt, kind="crps") .. ipython:: :okwarning: In [2]: loo_score(dt, kind="scrps") We can also pass previously computed PSIS-LOO weights and return the pointwise values: .. ipython:: :okwarning: In [3]: from arviz_stats import loo ...: loo_data = loo(dt, pointwise=True) ...: loo_score(dt, kind="crps", ...: log_weights=loo_data.log_weights, ...: pareto_k=loo_data.pareto_k, ...: pointwise=True) Notes ----- For a single observation with posterior-predictive draws :math:`x_1, \ldots, x_S` and PSIS-LOO-CV weights :math:`w_i \propto \exp(\ell_i)` normalized so that :math:`\sum_{i=1}^S w_i = 1`, define the PSIS-LOO-CV expectation and the left-continuous weighted CDF as .. math:: E_{\text{loo}}[g(X)] := \sum_{i=1}^S w_i\, g(x_i), \quad F_{\text{loo}}(x') := \sum_{i: x_i < x} w_i. The first probability-weighted moment is :math:`b_1 := E_{\text{loo}}\left[X\,F_{\text{loo}}(X')\right]`. With this, the nonnegative CRPS under PSIS-LOO-CV is .. math:: \operatorname{CRPS}_{\text{loo}}(F, y) = E_{\text{loo}}\left[\,|X-y|\,\right] + E_{\text{loo}}[X] - 2\,b_1. For the scale term for the SCRPS, we use the PSIS-LOO-CV weighted Gini mean difference given by :math:`\Delta_{\text{loo}} := E_{\text{loo}}\left[\,|X - X'|\,\right]`. This admits the PWM representation given by .. math:: \Delta_{\text{loo}} = 2\,E_{\text{loo}}\left[\,X\,\left(2F_{\text{loo}}(X') - 1\right)\,\right]. A finite-sample weighted order-statistic version of this is used in the function and is given by .. math:: \Delta_{\text{loo}} = 2 \sum_{i=1}^S w_{(i)}\, x_{(i)} \left\{\,2 F^-_{(i)} + w_{(i)} - 1\,\right\}, where :math:`x_{(i)}` are the values sorted increasingly, :math:`w_{(i)}` are the corresponding normalized weights, and :math:`F^-_{(i)} = \sum_{j<i} w_{(j)}`. The locally scale-invariant score returned for ``kind="scrps"`` is .. math:: S_{\text{SCRPS}}(F, y) = -\frac{E_{\text{loo}}\left[\,|X-y|\,\right]}{\Delta_{\text{loo}}} - \frac{1}{2}\log \Delta_{\text{loo}}. When PSIS weights are highly variable (large Pareto :math:`k`), Monte-Carlo noise can increase. This function surfaces PSIS-LOO-CV diagnostics via ``pareto_k`` and warns when tail behavior suggests unreliability. References ---------- .. [1] Bolin, D., & Wallin, J. (2023). *Local scale invariance and robustness of proper scoring rules*. Statistical Science, 38(1), 140–159. https://doi.org/10.1214/22-STS864 arXiv preprint https://arxiv.org/abs/1912.05642 .. [2] Gneiting, T., & Raftery, A. E. (2007). *Strictly Proper Scoring Rules, Prediction, and Estimation*. Journal of the American Statistical Association, 102(477), 359–378. https://doi.org/10.1198/016214506000001437 .. [3] Taillardat M, Mestre O, Zamo M, Naveau P (2016). *Calibrated ensemble forecasts using quantile regression forests and ensemble model output statistics*. Mon Weather Rev 144(6):2375–2393. https://doi.org/10.1175/MWR-D-15-0260.1 .. [4] Vehtari, A., Gelman, A., & Gabry, J. (2017). *Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC*. Statistics and Computing, 27(5), 1413–1432. https://doi.org/10.1007/s11222-016-9696-4 arXiv preprint https://arxiv.org/abs/1507.04544 .. [5] Vehtari, A., et al. (2024). *Pareto Smoothed Importance Sampling*. Journal of Machine Learning Research, 25(72). https://jmlr.org/papers/v25/19-556.html arXiv preprint https://arxiv.org/abs/1507.02646 """ if kind not in {"crps", "scrps"}: raise ValueError(f"kind must be either 'crps' or 'scrps'. Got {kind}") data = convert_to_datatree(data) loo_inputs = _prepare_loo_inputs(data, var_name) var_name = loo_inputs.var_name log_likelihood = loo_inputs.log_likelihood y_pred = extract(data, group="posterior_predictive", var_names=var_name, combined=False) y_obs = extract(data, group="observed_data", var_names=var_name, combined=False) n_samples = loo_inputs.n_samples sample_dims = loo_inputs.sample_dims obs_dims = loo_inputs.obs_dims r_eff = _get_r_eff(data, n_samples) _validate_crps_input(y_pred, y_obs, log_likelihood, sample_dims=sample_dims, obs_dims=obs_dims) if (log_weights is None) != (pareto_k is None): raise ValueError( "Both log_weights and pareto_k must be provided together or both must be None. " "Only one was provided." ) if log_weights is None and pareto_k is None: log_weights_da, pareto_k = log_likelihood.azstats.psislw(r_eff=r_eff, dim=sample_dims) else: log_weights_da = log_weights abs_error = np.abs(y_pred - y_obs) loo_weighted_abs_error = _loo_weighted_mean(abs_error, log_weights_da, sample_dims) loo_weighted_mean_prediction = _loo_weighted_mean(y_pred, log_weights_da, sample_dims) pwm_first_moment_b1 = _apply_pointwise_weighted_statistic( y_pred, log_weights_da, sample_dims, _compute_pwm_first_moment_b1 ) crps_pointwise = ( loo_weighted_abs_error + loo_weighted_mean_prediction - 2.0 * pwm_first_moment_b1 ) if kind == "crps": pointwise_scores = -crps_pointwise khat_da = pareto_k else: gini_mean_difference = _apply_pointwise_weighted_statistic( y_pred, log_weights_da, sample_dims, _compute_weighted_gini_mean_difference ) pointwise_scores = -(loo_weighted_abs_error / gini_mean_difference) - 0.5 * np.log( gini_mean_difference ) khat_da = pareto_k _warn_pareto_k(khat_da, n_samples) n_pts = int(np.prod([pointwise_scores.sizes[d] for d in pointwise_scores.dims])) mean = pointwise_scores.mean().values.item() se = (pointwise_scores.std(ddof=0).values / (n_pts**0.5)).item() name = "SCRPS" if kind == "scrps" else "CRPS" if pointwise: return namedtuple(name, ["mean", "se", "pointwise"])( round_num(mean, round_to), round_num(se, round_to), pointwise_scores, ) return namedtuple(name, ["mean", "se"])( round_num(mean, round_to), round_num(se, round_to), )
def _compute_pwm_first_moment_b1(values_sorted, weights): """Compute first PWM using a left-continuous weighted CDF.""" values_sorted, weights_sorted = _sort_values_and_normalize_weights(values_sorted, weights) cumulative_weights = np.cumsum(weights_sorted) f_minus = cumulative_weights - weights_sorted return np.sum(weights_sorted * values_sorted * f_minus).item() def _compute_weighted_gini_mean_difference(values, weights): """Compute PSIS-LOO-CV weighted Gini mean difference.""" values_sorted, weights_sorted = _sort_values_and_normalize_weights(values, weights) cumulative_weights = np.cumsum(weights_sorted) cumulative_before = cumulative_weights - weights_sorted bracket = 2.0 * cumulative_before + weights_sorted - 1.0 return (2.0 * np.sum(weights_sorted * values_sorted * bracket)).item() def _loo_weighted_mean(values, log_weights, dim): """Compute PSIS-LOO-CV weighted mean.""" log_num = logsumexp(log_weights, dims=dim, b=values) log_den = logsumexp(log_weights, dims=dim) return np.exp(log_num - log_den) def _apply_pointwise_weighted_statistic(x, log_weights, sample_dims, stat_func): """Apply a weighted statistic over sample dims.""" max_logw = log_weights.max(dim=sample_dims) weights = np.exp(log_weights - max_logw) stacked = "__sample__" xs = x.stack({stacked: sample_dims}) ws = weights.stack({stacked: sample_dims}) return xr.apply_ufunc( stat_func, xs, ws, input_core_dims=[[stacked], [stacked]], output_core_dims=[[]], vectorize=True, output_dtypes=[float], ) def _sort_values_and_normalize_weights(values, weights): """Sort values by ascending order and normalize weights.""" idx = np.argsort(values, kind="mergesort") values_sorted = values[idx] weights_sorted = weights[idx] weights_sorted = weights_sorted / np.sum(weights_sorted) return values_sorted, weights_sorted